DISCOVERY & PRECLINICAL VALIDATION FOR TWO THERAPEUTIC LEADS WITH NOVEL MOAS IDENTIFIED USING ARIA’S PROPRIETARY AI-PLATFORM

ANJALI PANDEY, PHD.
SVP NONCLINICAL R&D AND CHEMISTRY

IPF SUMMIT
AUGUST 26TH 2021
AGENDA

• Background

• Discovery with Aria’s proprietary AI-platform

• *In vivo* efficacy study

• Summary
BACKGROUND
ABOUT ARIA PHARMACEUTICALS

First-in-class small molecules

Over 18 diseases in our pipeline

Generating a 30X Hit Rate at *in vivo* efficacy milestones

Saves years in drug development
IDIOPATHIC PULMONARY FIBROSIS (IPF)

MARKET
- **3 MILLION** cases worldwide
- **3-5 YEARS** - life expectancy after diagnosis
- **NINTEDANIB & PIRFENIDONE** standards of care: slow disease progression

SPEED AND SUCCESS
- **↑ 10 OF 20 MOLECULES ADVANCED** from hit prediction to *in vivo*
- **12 WEEKS** from program start to *in vivo* results

LEAD MOLECULE TXR-1002 & TXR-1007 IN VIVO HIGHLIGHTS:
- **2 NOVEL MOAs** in IPF
- Significant **REDUCTION** of collagen in lung tissue - comparable to nintedanib
- **LOWERS** lung infiltration of neutrophils – lower than nintedanib
- **LOWERS** lung infiltration of lymphocytes – comparable to nintedanib
- **GOOD TOLERABILITY** – Minimal body weight changes.
- TXR-1002, TXR-1007 clinically investigated mechanisms
DISCOVERY WITH ARIA’S PROPRIETARY AI-PLATFORM
OUR PROCESS SAVES YEARS IN DEVELOPMENT WITH 30X SUCCESS RATE

TRADITIONAL APPROACH

- Pathogenesis analysis
- Target identification
- Bioassay development
- High throughput screening

Limitations:
- Single MOA hypothesis
- Creation of de novo NCE risky

1% - 2% success

ADVANCED APPROACH

- Advantages
 - Multiple MOAs examined
 - NCE based on known chemistry

- Pathogenesis analysis
- Target identification
- Bioassay development
- High throughput screening
- Efficacy predictions
- Lead discovery
- Lead optimization
- IND-enabling studies

30% success

0-6 MONTHS
DISCOVERY PROCESS IDENTIFIES TXR-1002 AND TXR-1007 IN 12 WEEKS

AI-Driven Discovery
Diverse Data, Methods:
- 32 data sources
- 65 methods
- 2M+ molecule chemistry library

50K Molecules

AI-Assisted Review
Novelty and Safety:
- Novel MOA
- Safety profile
- ADME properties

87 Molecules

Hit Diligence
PhD-led Deep Dive:
- MOA relevance
- MOA safety
- IP development path

20 Molecules

Preclinical
Optimal Disease Models:
- Test diverse MOAs
- CRO availability
- Rapid in vivo efficacy

10 Molecules
IN VIVO EFFICACY STUDY
IN VIVO EFFICACY STUDY DESIGN

C57/BL6 Male mice

Body weight measurement 3 times weekly

- Bleomycin Oral Aspiration
- Drug Dosing Start

In-life

Sample Collection
- BALF*
- Lung

Efficacy Measures
- Lymphocyte counts
- Neutrophil counts
- Collagen staining

Post-life

- Bleomycin-induced lung injury in male mice
- Proof-of-concept model for initial drug candidate evaluation
- Standard of care nintedanib (PDGFR, FGFR, and VEGFR inhibitor) used as reference therapy
- Additional lung fibrosis models available for further candidate investigation; e.g., TGF-β overexpression and/or a treatment paradigm instead of prophylaxis

* BALF - Bronchoalveolar lavage fluid
EXCELLENT TOLERABILITY FOR TXR-1002 & TXR-1007

- Weight profile better than nintedanib
IN VIVO EFFICACY COMPARABLE TO STANDARD OF CARE

- TXR-1002 & TXR-1007 significantly reduce collagen staining in lung tissue (comparable to nintedanib)
- TXR-1002 & TXR-1007 lowers lung infiltration of neutrophils (TXR-1002 better than nintedanib)
 - Directional – inflammation markers measured at day 21**

Lung Collagen

<table>
<thead>
<tr>
<th>Masson Trichrome Scores</th>
<th>No Vehicle</th>
<th>Vehicle Only</th>
<th>Nintedanib</th>
<th>TXR-1002</th>
<th>TXR-1007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen Fibrosis Score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 = 0%</td>
<td>1 = 1-5%</td>
<td>2 = 6-15%</td>
<td>3 = 16-40%</td>
<td>4 = 41-70%</td>
<td>5 = 71-100%</td>
</tr>
</tbody>
</table>

Lung Neutrophils

<table>
<thead>
<tr>
<th>Score</th>
<th>No Vehicle</th>
<th>Vehicle Only</th>
<th>Nintedanib</th>
<th>TXR-1002</th>
<th>TXR-1007</th>
</tr>
</thead>
</table>

- n=10 mice per group
- *p< 0.05
- **Typical study protocol is to measure earlier to capture peak inflammation**
IN VIVO EFFICACY COMPARABLE TO STANDARD OF CARE

- TXR-1002 & TXR-1007 lowers lymphocytes (comparable to nintedanib)
- Directional – inflammation markers measured at day 21*

*Typical study protocol is to measure earlier to capture peak inflammation
n=10 mice per group
TXR-1002 & TXR-1007 SUMMARY

TXR-1002 & TXR-1007 DEMONSTRATE POSITIVE INITIAL EFFICACY WITH A NEW MECHANISM FOR IPF

GOOD TOLERABILITY – clinically investigated mechanism

LUNG INFLAMMATION HISTOLOGY – decrease infiltrating neutrophils and lymphocytes

LUNG FIBROSIS HISTOLOGY – decreased fibrosis (key efficacy measure)
STUDY SUMMARY AND CONTINUED DEVELOPMENT OF NOVEL MOA FOR IPF

APPROACH

- **Prediction Hits**
- **In Vivo Screening**
- **Lead Optimization**
- **IND-enabling Studies**

Time (weeks)
- 4
- 8

APPROACH

- **Current Position**
- **Candidate Selection**

- **Rapid Progression through hit validation and lead optimization**
 - 10 MOAs selected and evaluated in an *in vivo* screening study
 - 2 leads/hits TXR-1002 & TXR1007 discovered from *in vivo* screen (different MOAs)
 - Positive results in bleomycin-induced IPF mouse model
 - Currently lead optimization activities ongoing for TXR-1002, with novel MOA
 - Well tolerated mechanism in clinical trials
ACKNOWLEDGEMENTS

Discovery Platform

• Aaron Daugherty, PhD
• Sana Mujahid, PhD

NonClinical/Preclinical

• Isaac Hakim, PhD

KOL

• Fernando Martinez, MD
 Chief of the Division of Pulmonology and Critical Care Medicine
 Weill Cornell Medicine
 Joan & Sanford I. Weill, Department of Medicine

• Martin Kolb, MD PhD
 Director, Division of Respirology
 Jack Gauldie Boehringer Ingelheim Chair in Interstitial Lung Disease
 Departments of Medicine, McMaster University

CRO

• Weiyu Zhang, PhD
 Study Director, MD Biosciences
Anjali Pandey, Ph.D.

SVP Nonclinical R&D and Chemistry
anjali@ariapharmaceuticals.com

www.ariapharmaceuticals.com